Large deviation principle for invariant distributions of memory gradient diffusions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A large deviation principle for Dirichlet posteriors

Let Xk be a sequence of independent and identically distributed random variables taking values in a compact metric space Ω, and consider the problem of estimating the law of X1 in a Bayesian framework. A conjugate family of priors for non-parametric Bayesian inference is the Dirichlet process priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequence...

متن کامل

Strong Law of Large Numbers and Mixing for the Invariant Distributions of Measure-valued Diffusions

Let M(Rd) denote the space of locally finite measures on Rd and let M1(M(Rd)) denote the space of probability measures on M(Rd). Define the mean measure πν of ν ∈M1(M(Rd)) by πν(B) = ∫ M(Rd) η(B)dν(η), for B ⊂ R. For such a measure ν with locally finite mean measure πν , let f be a nonnegative, locally bounded test function satisfying < f, πν >= ∞. ν is said to satisfy the strong law of large n...

متن کامل

Large deviation principle for enhanced Gaussian processes

We study large deviation principles for Gaussian processes lifted to the free nilpotent group of step N . We apply this to a large class of Gaussian processes lifted to geometric rough paths. A large deviation principle for enhanced (fractional) Brownian motion, in Hölderor modulus topology, appears as special case. © 2007 Elsevier Masson SAS. All rights reserved. Résumé Nous etudions les princ...

متن کامل

A Numerical Scheme for Invariant Distributions of Constrained Diffusions

Reflected diffusions in polyhedral domains are commonly used as approximate models for stochastic processing networks in heavy traffic. Stationary distributions of such models give useful information on the steady state performance of the corresponding stochastic networks and thus it is important to develop reliable and efficient algorithms for numerical computation of such distributions. In th...

متن کامل

A large deviation principle for Dirichlet posteriorsA

Let X k be a sequence of independent and identically distributed random variables taking values in a compact metric space , and consider the problem of estimating the law of X 1 in a Bayesian framework. A conjugate family of priors for non-parametric Bayesian inference is the Dirichlet process priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2013

ISSN: 1083-6489

DOI: 10.1214/ejp.v18-2031